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Classification and Regression Trees (CART)

• Decision trees
• Supervised learning method
• Data driven method
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Model

Y = f(X1, X2, ...Xn) + ϵ

Goal: What is f?

4



How do we estimate f ?

Data-driven methods:

estimate f using observed data without making explicit
assumptions about the functional form of f.

Parametric methods:

estimate f using observed data by making assumptions about
the functional form of f.
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Classification and Regression Trees

1. Classification tree - Outcome is categorical
2. Regression tree - Outcome is numeric
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Classification and Regression Trees

• CART models work by partitioning the feature space into
a number of simple rectangular regions, divided up by axis
parallel splits.

• The splits are logical rules that split feature-space into
two non-overlapping subregions.
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Example: Feature space

Features: Sepal Length, Sepal Width
Outcome: setosa/versicolor
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Decision tree
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Parts of a decision tree

• Root node
• Decision node
• Terminal node/ Leaf node (gives outputs/class

assignments)
• Subtree
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Image source:
https://www.tutorialandexample.com/wp-content/
uploads/2019/10/Decision-Trees-Root-Node.png
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Decision tree
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Root node split
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Root node split, Decision node split - right
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Root node split, Decision node splits
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Shallow decision tree
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Two key ideas underlying trees

• Recursive partitioning (for constructing the tree)
• Pruning (for cutting the tree back)
• Pruning is a useful strategy for avoiding over fitting.
• There are some alternative methods to avoid over fitting

as well.
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Leo Breiman

Key references
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Constructing Classification Trees

Recursive Partitioning

• Recursive partitioning splits P-dimensional feature space
into nonoverlapping multidimensional rectangles.

• The division is accomplished recursively (i.e. operating on
the results of prior division)
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Main questions

• Splitting variable
Which attribute/ feature should be placed at the root
node?
Which features will act as internal nodes?

• Splitting point
• Looking for a split that increases the homogeneity (or

“pure” as possible) of the resulting subsets.
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Example

split that increases the homogeneity
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Example (cont.)

split that increases the homogeneity .
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Key idea

1. Iteratively split variables into groups
2. Evaluate “homogeneity” within each group
3. Split again if necessary
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How does a decision tree determine the best split?

Decision tree uses entropy and information gain to select a
feature which gives the best split.
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Measures of Impurity

• An impurity measure is a heuristic for selection of the
splitting criterion that best separates a given feature
space.

• The two most popular measures
• Gini index
• Entropy measure
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Gini index

Gini index for rectangle A is defined by

I(A) = 1 −
m∑

k=1
p2

k

pk - proportion of records in rectangle A that belong to class k

• Gini index takes value 0 when all the records belong to
the same class.
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Gini index (cont)

In the two-class case Gini index is at peak when pk = 0.5
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Entropy measure

entropy(A) = −
m∑

k=1
pklog2(pk)
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Example: Calculation (left)
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Example: calculation (right) (cont.)
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Finding the best threshold split?

In-class demonstration
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Overfitting in decision trees

• Overfitting refers to the condition when the model
completely fits the training data but fails to generalize
the testing unseen data.

• If a decision tree is fully grown or when you increase the
depth of the decision tree, it may lose some
generalization capability.

• Pruning is a technique that is used to reduce overfitting.
Pruning simplifies a decision tree by removing the
weakest rules.
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Stopping criteria

• Tree depth (number of splits)
• Minimum number of records in a terminal node
• Minimum reduction in impurity
• Complexity parameter (CP ) - available in rpart package
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Pre-pruning (early stopping)

• Stop the learning algorithm before the tree becomes too
complex

• Hyperparameters of the decision tree algorithm that
can be tuned to get a robust model

max_depth

min_samples_leaf

min_samples_split
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Post pruning

Simplify the tree after the learning algorithm terminates

The idea here is to allow the decision tree to grow fully and
observe the CP value
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Simplify the tree after the learning algorithm termi-
nates

• Complexity of tree is measured by number of leaves.

L(T) = number of leaf nodes

• The more leaf nodes you have, the more complexity.
• We need a balance between complexity and predictive

power

Total cost = measure of fit + measure of complexity

36



Total cost = measure of fit + measure of complexity

measure of fit: error

measure of complexity: number of leaf nodes (L(T))

Total cost (C(T)) = Error(T) + λL(T)

The parameter λ trade off between complexity and predictive
power. The parameter λ is a penalty factor for tree size.

λ = 0: Fully grown decision tree

λ = ∞: Root node only

λ between 0 and ∞ balance predictive power and complexity.
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Example: candidate for pruning (in-class)
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Classification trees - label of terminal node

labels are based on majority votes.

39



Regression Trees
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Regression Trees

Value of the terminal node: average outcome value of the
training records that were in that terminal node.

Your turn: Impurity measures for regression tree
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Decision trees - advantages

• Easy to interpret
• Better performance in non-linear setting
• No feature scaling required
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Decision trees - disadvantages

• Unstable: Adding a new data point or little bit of noise
can lead to re-generation of the overall tree and all nodes
need to be recalculated and recreated.

• Not suitable for large datasets
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